Search results for "Phase separation"
showing 10 items of 62 documents
A poly-L-lactic acid/ collagen/glycosaminoglycan matrix for tissue engineering applications
2017
Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the effectiveness of a tissue engineering construct (cell and scaffolds). Functionalization of polymeric scaffolds with organic polymers, such as collagen or proteoglycans, is a promising approach in order to improve the cytocompatibility. As a matter of fact, organic polymers, isolated directly from the extracellular matrix, contain a multitude of surface ligand (fibronectin, laminin, vitronectin) and arginine–glycine–aspartic acid-containing peptides that promote cell adhesion. In tissue engineering, the combination of organic and synthetic polymers gives rise to scaffolds characterized simultaneously …
Double Flow Bioreactor for In Vitro Test of Drug Delivery.
2015
In this work, double-structured polymeric scaffolds were produced, and a double flow bioreactor was designed and set up in order to create a novel system to carry out advanced in vitro drug delivery tests. The scaffolds, consisting of a cylindrical porous matrix, are able to host cells, thus mimicking a three-dimensional tumor mass: moreover, a âpseudo-vascularâ structure was embedded into the matrix, with the aim of allowing a flow circulation. The structure that emulates a blood vessel is a porous tubular-shaped scaffold prepared by Diffusion Induced Phase Separation (DIPS), with an internal lumen of 2 mm and a wall thickness of 200 micrometers. The as-prepared vessel was incorporated…
PLLA scaffolds with controlled architecture as potential microenvironment for in vitro tumor model
2019
Abstract The "microenvironment" where a tumor develops plays a fundamental role in determining its progression, the onset of metastasis and, eventually, its resistance to therapies. Tumor cells can be considered more or less invasive depending both on the nature of the cells and on the site where they are located. Commonly adopted laboratory culture protocols for the investigation of tumor cells take usually place on standard two-dimensional supports. However, such cultures do not allow for reproduction of the biophysical properties of the tumor’s microenvironment, thus causing the cells to lose most of their relevant characteristics. In this work MDA-MB 231 breast cancer cells were cultiva…
Cholesterol facilitates interactions between α‐synuclein oligomers and charge‐neutral membranes
2015
AbstractOligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson’s disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate …
Unconventional phases of attractive Fermi gases in synthetic Hall ribbons
2017
An innovative way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a one-dimensional optical lattice to mimic an additional "synthetic dimension." A notable aspect here is that the SU(M) symmetric interaction between atoms manifests as "infinite ranged" along the synthetic dimension. We study the many-body physics of fermions with SU(M) symmetric attractive interactions in this system using a combination of analytical field theoretic and numerical density-matrix renormalization-group methods. We uncover the rich ground-state phase diagram of the system, including unconventional phases such as squished baryon fluids, shedding light on many-body…
Demixing time and temperature influence on porosity and interconnection of PLLA scaffolds prepared via TIPS
2009
Scaffolds suitable for tissue engineering applications were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/ dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the binodal region), a liquid-liquid demixing stage for a given time and a final quench from the demixing temperature to a low temperature (within the spinodal region). A large variety of morphologies, in terms of average pore size and interconnection were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleation and growth processes d…
A Poly-L-Lactide scaffold with continuous gradient pore size for osteochondral regeneration validated in a microphysiological tissue system bioreactor
2016
A microphysiological tissue system (MPS) bioreactor has been developed to replicate in vitro the in vivo OC physiological conditions. The MPS allows separate control of the chondral and osseous environment while permitting communication between chondrocytes and osteoblasts across the OC junction, similar to the conditions of OC tissue in vivo. We have used here our MPS system to validate the TIPS -generated pore-gradient PLLA scaffold.
The use of Diffusion Induced Phase Separation (DIPS) technique for the preparation of biodegradable scaffolds for angiogenesis
2008
PLLA/Fibrin Tubular Scaffold: A New Way for Reliable Endothelial Cell Seeding
2014
In the present work a simple and quick technique for cell seeding into tubular-shaped scaffolds, which allows a homogeneous cell distribution, was tested. The poly-L-lactide (PLLA) scaffolds, prepared via diffusion induced phase separation (DIPS), were filled with fibrin gel in order to obtain a hybrid scaffold for Vascular Tissue Engineering applications. The formation of immobilized fibrin networks on the inner surface of the tubular scaffolds was observed using confocal microscopy and SEM. Morphological analysis of the so-obtained scaffold revealed that the fibrin gel is uniformly distributed on the internal surface of the scaffold, leading to an organized structure. Moreover a penetrati…
Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates
2021
De novo designed protein supramolecular structures are nowadays attracting much interest as highly performing biomaterials. While a clear advantage is provided by the intrinsic biocompatibility and...